
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSEVIER Journal of Pure and Applied Algebra 127 (1998) 289-307 

The construction of some Gorenstein ideals 
of codimension 4 

Yong Su Shin* 

Department of’ Mathematics, Sung Shin Women’s University, Seoul, South Korea 

Communicated by F.W. Lawvere; received 23 May 1996; revised 25 September 1996 

Abstract 

We obtain the number and the degrees of the generators of the ideal of a k-configuration 

in Pi and so construct the Gorenstein ideal of codimension 4. @ 1998 Elsevier Science B.V. 
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I. Introduction 

Let k be an infinite field and let X = {PI,. . , f,} be a set of s-distinct points in P”. 

We denote by Z(X) the defining ideal of X in the polynomial ring R = k[xo,. .,x,1 

and by A the homogeneous coordinate ring of X, A = cz, A,. The Hilbert function 

of X (or of A) is the function H: N + N described by 

H(X, t) = H(A, t) = dimk At = dimk Rt - dimk I,. 

The first difference of the Hilbert function of X (or of A) is 

1 
AH(X,t) = 

for t = 0, 

H(X,t)-H(X,t-1) fort> 1. 

We also denote by a(X) (or o(A)) the least integer for which 

AH(X,o) = 0 and AH(X,a - 1) # 0. 
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In [5], we obtained the number and the degrees of the generators of an ideal of 

a k-configuration in P2 and the minimal graded free resolution of the ideal. 

The aim of this paper is to obtain the number and the degrees of the generators of an 

ideal of a k-configuration in P3 and to construct a Gorenstein ideal of codimension 4 

from them. 

In Section 2, we recall the notion of a k-configuration in P3 and prove our main 

theorem (see Theorem 2.5). 

In Section 3, we find the minimal graded free resolution of the ideal I of a 

k-configuration in P3 in a special case. 

In Section 4, we introduce the notion of a weak k-configuration in P3 and construct 

Gorenstein ideals of codimension 4 using the results in Section 2. In [4], Geramita 

and Migliore constructed a Gorenstein ideal of codimension 3 using an arithmetically 

Cohen-Macaulay curve in P3 with a specific minimal free resolution, and the structure 

theorem of Buchsbaum and Eisenbud [2]. 

2. k-Configurations in lP3 

Roberts and Roitman [8] introduced the following definition: 

Definition 2.1. A k-configuration is a finite set X of points in P2 which satisfies the 

following conditions: 

There exist integers 1 < dl < . < d,, and subsets Xi,. . . , Xm of X, and distinct 

lines [Li,..., L, C P2 such that: 

(1) X = u;=, xi; 

(2) /& = d, and Xj c Li for each i = l,...,m; and 

(3) lli (1 < i < m) does not contain any points of X, for all j < i. 

In this case, the k-configuration in P2 is said to be of type (dl, . . , d,,,). 

Theorem 2.2 (Geramita et al. [5]). Let X he a k-conjguration in p2 of type (d,, . . , 

A) and let I be the ideal of X. Then v(I) =m + 1 and the minimal graded free 
resolution of I as an R-module is 

0 + R(-(dl + rn))@...@ R(-(d, +m - i+ l))@...@R(-(dm + 1)) 

-R(-m)@R(-(dl +m- l))@...@R(-(dj+m-i)) 

@ $ R(-d,) + I 4 0, 

where v(I) is the number of the minimal generators of I 

Definition 2.3 (Harima [6]). A k-configuration in P3 is a finite set of points which 

satisfies the following conditions: 

There exist subsets X 1,. . . , Xu of X and distinct hyperplanes W 1,. . . , W, such that: 

(1) X = lJ;=, xi; 
(2) XjCWj for any i= l,...,~; 
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(3) Wi (1 < i 5 u) does not contain any points of Xj for any j < i; and 

(4) Xi (1 < i < U) is a k-configuration in Wi of type (d,, , . . . , LI;,~ ) with dim8 < mi+l 

for every 1 2 i < u. 

In this case, the k-configuration in P3 is said to be of type 

(di,,...,u’,,,;...;d,,,..., d,,, ). 

For simplicity of notation, let (dij) denote the tuple of integers (dl~, . . . , dl,,, ; . . ; 

d ul,. . . ,dum,,) with d,,z < mi+l for every 1 < i < u. 

Remark 2.4. (1) All k-configurations in P3 of type (dij) have the same Hilbert func- 

tion, which will be denoted by H(dt~). 

(2) Let H = {b } I r20 be a zero-dimensional O-sequence with bl = 4. Applying the 

procedure of Theorem 4.1 in [3], we can get integers (dl,,. . . ,dl,,; . . . ; d,,, . . ,d,,,,) 

with dim, < mi+l for every 1 < i < u such that 

H = H(d,). 

Theorem 2.5. Let X be a k-configuration in P3 of type (d,, , . . , d,,, ; . . . ; d,,,, . . , d,,,,,) 

and let I be the ideal of X. Then v(Z) = EYE, mi+u-+ 1 and the degrees of the minimal 

generators of I are 

u, ml +u- 1, dll +ml +U-2, . . . . dli+ml +u-i- 1, ..,, d,,, _tu- 1, 

mj+U-j, 41 tmj+U-j-l, . . . . 4i + mj + U - i - j, , 4m, + u - j, 

m,, d,l + m, - 1, . . . , dui $ m, - i, . . . , du,u. 

Proof. Since X is a k-configuration in P3 of type (dl,, , dl,,,, ; . . . ; d,,, , . . . ,d,,,u), there 

exist subsets X,, . . , X, of X and distinct hyperplanes W,, , W, such that: 

(1) x = u;=, X; 
(2) Xi C Hi for every i = 1,. . . , U; 

(3) Wi (1 < i < u) does not contain any points of Xj for any j < i, and; 

(4) Xi (1 < i < u) is a k-configuration in P2 of type (d,,, . . . , d,,,) with dim, < mi+l 

for every i < 24. 

We shall prove the theorem by induction on u. Let u = 1. Then X is a k-configuration 

in P2 of type (dll,. . . , dl,, ). Let H, = I( W, ), S = R/(H, ) and JI = (I + (HI ))/(H, ) 

(=Z/(Hl)). Then JI is the ideal of a k-configuration in P2 of type (dl],. . . ,dl,, ). By 

Theorem 2.2, there exist F~o, FIN,. , Fj,, E I with degrees 

degfio =m,, degF,I =dll +ml - 1, . . . . degF,,, =dlm, 

such that J1 = (Flo,FII ,..., F,,,). Hence 

I=(HI,F~o,F,,,...,FI,,), 

and this proves the theorem when u = 1. 
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Now suppose u > 1. Let Y = lJ:r: Xi and I’ be the ideal of M. Then D/ is a k- 

configuration in P3 of type (dr I,. . . , dl,, ; . . . ; dc,_~ )I,. . . , d~,_~)~,_, ). Hence ~(1’) = 

Cri: d,,, + u and the degrees of the minimal generators of Z’ are 

u- 1, ml +(u- l)- 1, dll +m, +(u- 1)-z, . . . . 

&+mt +(u- 1)-i- 1, . . . . d,,, +(ZF I)- 1, 

mj+(u- 1)-j, ~$1 +mj+(u- 1)-j- 1, . . . . 

d,,+m,+(u- 1)-i-j, . . . . &, +(u- 1)-j, 

w-1, &-111 +m,-1 - 1, . . . . &-l)i +m,-1 - i, . . . . d(,-~),~_,, 

by the induction hypothesis. Let H, = I( W,), T = R/(H,,), and J2 = (I + (HU))/(Hu). 

Then 

I I I+(Hu) =p 
Hu . [I : f&J 

-p=J,cT. 
(4) r- 1 - (Hu) 

Thus we have an exact sequence of graded modules 

(2.1) 

II 
52 

Let 

V={P,,...&}, 

xu = {~F+l,...,P~+t~, 

@i =I(P, 1, for every i= l,...,s+t. 

Since 

we have, for every i = 1,. . . ,s + t, the following: 

[I:Hu]= [@i: H,]= f$ [pi: Hu]= fl fJi==I(V). 
izl r=, 

Thus we can rewrite the exact sequence (2.1) as 

O+Z(V)(-l)%Z+J2+0. (2.2) 
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It follows from (2.2) that 

1 
WTlJ2, t> = 

for t = 0, 

H(R/Z,t) - H(V,t - 1) for t > 1, 

which implies J2 is a saturated ideal, i.e., I + (HU) =1(X,). 

By Theorem 2.2, there exist F,o, F,l, . , F,,,,” E I with degrees 

deg &I = mu, deg Ful = d,,, + m, - 1,. . , deg Fum, = dum, 

such that Fuo, F,, ,, . . . , %,, are the minimal generators of J2. Let {I$} be the minimal 

generators of I(V) and {F;j} = {~$!J,} U {Fuo,Ful,. . ,F,,,u}. 0 

Claim. I = ({fij}). 

Proof of claim. Clearly, ({F;i) C I. Conversely, for every F E I, F E J2. Hence 

F = FuoNo + FUI NI + . . + FurnuN,,,, + H,K 

for some NO, Nt, . . . , N,,,U, K E R. Since K E [Z:H,]=Z(V), 

for some A4lj E R. Hence 

F = FuoNo + F,INI + 

= FuoNo + EINI + 

= FuoNo + F,INI + 

E ({F;i>). 

Hence we are done. 0 

3. A graded free resolution of the ideal of a k-configuration in lP3 

From Theorem 2.2, we can always get a minimal graded free resolution of the ideal 

of a k-configuration in P2. But it is not easy to get a minimal graded free resolution 

of the ideal of a k-configuration in P3. 

Let Y(R/I) denote the socle elements of R/I when dim R/I = 0 and I # m = 

(x, y,z, w) where R = k[x, y,z, w]. From the minimal graded free resolution in 

Theorem 2.2, we get the following Lemma. 
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Lemma 3.1. Let X he a k-conjiguration in P2 of type (d,, . ,d,,,) and I be the ideal 

of X. Let L he a general linear form of R/I. Then there exist Al,. ,Ai,. , A,,, E R 

such that 

.Y’(R/(L,I))=(Al,..., Ai ,..., A,) 

where 

degAl=dl +m-2, . . . . degAi=di+m-i- 1, . . . . degA,=d,,- 1. 

Lemma 3.2. Let X be a k-co$guration in P3 of type (dl, , d,), I he the ideal of 

X, W be a hyperplane which contains X, and (H) =I( W). Let L be a general linear 

jbrm of R/I, S = RI(H), and J = I/(H) c S. Then jtir some A E R, 2 is a non-zero 

socle element of R/(L, I) iJ’ and only iJ’ 1 is a non-zero socle element of S/(z, J). 

In particular, 

dimk .4p(Rl(L,I)) = dimk Y’(SI(L, J)). 

Proof. Clearly, A is not zero in RI(L,Z) if and only of 2 is not zero in SI(z, J) and 

Amc(L,I)%~E=(Am+(H))/(H)C(L,I)/(H)=(~,J), 

i.e., 

A E .Y(RI(L,I)) % 2 E Y(S/(z, J)). 

Hence we are done. 0 

Lemma 3.3. Let X be a k-configuration in P3 of type (dl, . . , d,,,) and I be the ideal 

of x. 
l l ..’ . 

l . . . l . . 

P3 >W>..’ . . . . . . 

. . l l l l 

Let L be a general linear form of R/I. Then there exist Al,. 

that 

Y(RI(L,I))=(A ,,..., A, ,..., A,) 

where 

degAl=dl fm-2, . . . . degAi=di+m-i-1, . . . . 

. . . 

L 

Ai,. . . , A,,, E R such 

degA, =d, ~ 1. 

Proof. We shall prove this by induction on m. Let m = 1. Then X is a complete 

intersection of type ( 1, 1, dl ). Hence there exists a socle element 2, of R/(L, I) with 

degree dl - 1. 
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Now assume m > 1. Let IL,, . , [L, (# W ) be the distinct hyperplanes such that [ii 

contains the ith di-points of X for every i = 1,. . . , m. 

Let Y = UyL: Xi where Xi = X n Li for every i = 1,. . . , m. Then Y is a k-configu- 

ration in P3 of type (dl,. . . ,d,_,). Hence there exist A,‘, . . . ,A;, . . ,A;_, E R such that 

.Y(R/(L,Z(V)))=@; ,..., 2; ,..., xi_,) 

with degrees dl + (m - 1) - 2,. . . , di+(m-l)-i-l,...,d,_t-1 bytheinduction 

hypothesis. 

By Theorem 2.5, there exist minimal generators 

H, F& F; , . . , F;‘, . . . , F;_ , 

of Z(V) with degrees 

degFA = m - 1, degF[=dl +(m- I)- 1, . . . . 

degF;‘= d;+(m- 1)-i, . . . . degF~_,=d,_,. 

Let (L,)=I([Lm) and F;=F;!L, for every i=O,...,m - 1. Then 

I= (H,F,,,F ,,..., fi ,..., F,) 

for some F, E I with degree d, by Theorem 2.2 and 2.5. 

Claim. 21,. . . ,A,+, are socle elements of R/(L,Z) where Ai =AiLm for every 

i = l,...,m - 1. 

Proof of claim. Assume zi = G in R/(L,Z) for some i = 1,. . . , m - 1. Then Ai E (L,Z) = 

(L,H,FO,FI ,...,F,). Since degA;=d;+m-i- l<di+m-i= degfi, Ai E (L,H,Fo, 

. . . , F;- I), there exist CC, ‘J, PO,. . . , pi-1 such that 

A, = UL + yH + PoFo + ” ’ + /?_lFi_l 

+ (A: - (/&Fd + ... + pi-1F;‘,))L, E (L,H). 

Hence 

A:-(PoF~+...+B;~~F;‘,)E(L,H) 

since L,H,L, are a regular sequence in R. Thus 

A(E (L,H,F; ,..., Z$,) c(L,z(~)), 

a contradiction. Hence Ai # 0 in R/(L,Z) for all i = 1,. . . , m - 1. Moreover, 

Aim = (AiL,)m = L,(A:m) C L,(L,Z(Y)) = (L,L,L,Z(V)) c(L,Z), 

which implies that 2; is a non-zero socle element of R/(L,Z) with degree di + m - 

i - 1 for every i = 1,. . . ,m - 1. Since ,?,‘, . . . ,xk_, are linear independent over k, 

&, . , A,, . . , A,_ 1 are also linear independent over k. 
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Fig. I. k-configuration in P3 of type (1,2; 1,2,4). 

Since 

AH&d, - 1) = A[H(X,,d, - 1) + H(V,d, - 2)] 

= AH(X.,,d, - 1) + AH(V’,d, - 2) 

= 1 + AH(Y,d, - 2) 

and AH(X, d,) = 0, we get one more socle element A, of R/(L, I) with degree d, - 1 

which is not contained in (11,. . ,A,, . ,A,_, ). Hence 

5qR/(L,Z))=(A I)...) A, )...) A,) 

with degrees 

Al + m - 2, . . . , di + m - i - 1 > ..., d, - 1 

by Lemma 3.3 and Theorem 2.2, and we are done. 0 

From Lemma 3.3, we get the following theorem. 

Theorem 3.4. Let X be a k-conjiguration in P3 of’ type (d,, . . . ,d,) and let I be the 

ideal oJ’ X Then the minimal graded free resolution of I as an R-module is 

0 + R(-(dl +m+l>)@...$R(-(d,+2)) 

+ R(-(m + 1)) @ R2(-(d1 + m)) $ @ R2(-(d,,, + 1)) 

4 R(-l)@R(-m)@R(-(dl fm- l)@...@R(-d,) 

+Z+O. 

Example 3.5 (Macaulay, see Bayer and Stillman [l]). Let X = {(O,O, 1, l), (l,O, 1, l), 

(l,l,l,l), (O,O,O,l), (1,0,0,1),(1,1,0,1), (2,0,0,1),(2,1,0,1)(2,2,0,1), (2,3,0,1)} 
(see Fig. 1). Then X is a k-configuration in P3 of type ( 1,2; 1,2,4). 
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A computation, using Macaulay, gives that for this example, the Betti numbers in 

a minimal free resolution of the ideal of X are: 

total: 1 8 12 5 

0: 1 - - - 

l:- 1 -- 

2: ~ 6 10 4 

3:- 1 2 1 

Notice that these numbers are precisely those given in (3.1). This is not an isolated 

example. We have made many calculations (using Macaulay) and have always found 

the Betti numbers in a minimal free resolution of the ideal of a k-configuration in iP3 

are those given (3.1). 

Hence, it seems reasonable to conjecture: 

Conjecture 3.6. Let X be a k-conjguration in P3 of type (d,,,. . . ,d,,,;. . ;d,,, 

. . . , dum,l > and let I be the ideal of X. Then a graded minimal free resolution of I as 

an R-module is 

m1+...+m,, 2(m,+~~~+m,)+u 

0 * f$ R(-ci) + @ Wbj) 
j=l 

ml+..~+m,+u+l 
+ CD R(-ak) + I +O 

k=l 

(3.1) 

where 

ml+~~+m,fu+l 
C3 R(-ak) 
k=l 

=R(-u)@R(-(m, fu- l))@R(-(d,, +ml $-u-2))@... 

@W(dli + ml - i + u - 1)) &I.. . @R(-(dl,, + u _ 1)) 

@R(-(m2+u-2))@R(-(d21+rn2+U-3))$.. 

@R(-(d2, + m2 - i + u - 2)) $ . @ R(-(dzm2 + u _ 2)) B 

@R(-(mj+u-j))@R(-(djl+m,+u-j-l))@... 

@R(-(dj,+mj-i+u-j))@...@R(-(djm,+u-j))e 

@R(-mu> @ R(-(41 + m, - 1)) @ . $ R(-(d,, + m, - i>> 
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2(mi+.~.+m.)+u 

CD R(-6,) 
j=l 

= R(-(ml + u))@R2(-(d,, + ml fu- l))@.dR2(-(&+m, -i+u)) 

$... @R2(-(dh + u))@R(-(m2 + u - 1)) $ R2(-(d2, + mz + U _ 2)) 

$... @R2(-(d2i + m2 - i + u - 1)) $ . . @ R2(-(d2m2 + u _ 1)) $ 

@R(-(mu + 1))@R2(-(dul l tm,))~B... $ R2(-(& +m, -i+ 1)) 

cB.. . @ R2(-(dm, + l)), 

rn,i~~~frn, 

G3 WC,) 
i=l 

=R(-(dll +ml +u))@...CBR(-(dli+ml -i+u+l))@... 

@R(-(4,, + u + 1)) 69 R(-(d21 + rn2 + u - 1)) $ . 

@R(-(d2i + m2 - i + u)) $ . . . @ R(-(d2,2 + u)) B 

@R(-(~I + m, + 1)) $. . @ I?-(& + m, _ i + 2)) $. . . 

@ R(-(&mu + 2)). 

4. The construction of some Gorenstein ideals of codimension 4 

In this section, we shall construct some Gorenstein ideals of codimension 4 using 

k-configurations in P3 and find the degrees of the minimal generators of these ideals. 
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Definition 4.1 (Geramita et al. [5]). A weak k-configuration in P2 is a finite set X 

of points in P2 which satisfies the following conditions: 

There exist integers 1 5 di < . 5 d,, subsets X 1, . , X, of X, and distinct lines 

ill,. . . , L, C P2 such that: 

(1) i < di for each i= l,...,m; 

(3) IX,J=d; and XiCLi for each i=l,...,m; and 

(4) Li (1 < i 5 m) does not contain any points of Xj for all j < i. 

In this case, the weak k-configuration in P2 is said to be of type (dl,. . . , d,). 

Theorem 4.2 (Geramita et al. [5]). Let TX be a weak k-conjiguration in P2 of type 

(dl,..., d,,...,d,,,+r) whered,<...<d,=...=d,,l and/> 1. LetI be the ideal 

of X. If X is a subset of complete intersection in P2 of type (m + /,d,), then 

v(I) = m + 1 and the minimal free resolution of I, as an R-module, is 

O+R(-(dl +m+&))@~~~@R(-(di+m+~-i+l))@~~~ 

@R(-(A-1 + e + 2)) @ R(-(dm + e + 1)) 

-R(-(m+Q)@R(-(dl +m+e- l))@... 

@R(-(dj+m+P-i))B...@R(-(d,,_, +!+ l))@R(-d,) 

Definition 4.3. A weak k-configuration in P3 is a finite set of 

the following conditions: 

points which satisfies 

There exist subsets Xi,. . . , X, of X and distinct hyperplanes Wi,...,W, such that: 

(1) X= lJ;,, x1; 

(2) Xi C Hi for any i= 1,. ..,U; 

(3) Hi (1 <i 5 u) does not contain any points of Xj for any j<i; and 

(4) X; (1 5 i < u) is a weak k-configuration in Hi of type (di,, . . . , dim, ). 

In this case, the weak k-configuration in P3 is said to be of type 

From the Theorem 4.2, we obtain the following theorem. 

Theorem 4.4. Let X be a weak k-configuration in P3 of type (dl,. . .,d,, . . .,d,+/) 

where dl < ... cd,,,= ‘.’ =d,,,+r and E! > 1. Let I be the ideal of X. If X is a subset 

of complete intersection in P3 of type (l,m+e,d,), then v(I) = mf2 and the degrees 

of the minimal generators of I are 

1, m+/, dl+m+f-l,..., di+m+e--i ,..., d,_i+e+l, d,. 

Definition 4.5 (Harima [6]). A finite complete intersection set of points Z in P” is 

said to be a basic conjiyuration in P” if there exist integers ~1,. . . ,r,, and distinct 
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hyperplanes lLij( 1 < i 5 n, 1 5 j 5 vi) such that 

z=w1 n... n W, as schemes, where W, = [ii, U . . . U [Lj,.,. 

In this case L is said to be of type (Y,, . , r,,). 

Remark 4.6. Let Z be a basic configuration in P3 of type (u, x, 8) (U < a </I). Let 

X = Ur=, Xi c Z be a k-configuration in P3 of type (dir,. . . ,a!~,,;. . . ; c&l,. ,d,,,,) 

where X, is a k-configuration in P2 of type (d,t , . . . , dim, ). Let m, < cx and d,,,” -C/I. 

Assume & c Z is a basic configuration in P3 of type (1, CC, /?) such that Xi c & and 

o/, = Zi - Xi is a weak k-configuration P3 of type (/3 - dim,, . . . ,fi - d;l,b,. ,/I) for 

every i = 1,. . . , u. Let Y = Ur=, V’,. Then V is a weak k-configuration in P3. 

Moreover, 

AH(Z,t)=AH(X,t)+AH(V,a- 1 -t), 

where a=~(X)=u+a+P-2 

Similarly, 

AH(Z,, t) = AH@,, t) + AH(Vu CJ’ - 1 - t), 

AH(Z’,t-l)=AH(X’,t-l)+AH(V’,u-l-t), 

where Z’ = Uyl: Z;, X’ = uri: pi, V’ = Urz: Vi, and 0’ = E + /3 - 1. Hence 

AH(V’,a- 1 -t)=AH(Vu,a’- 1 -t)+AH(V’,a- 1 -t). 

Lets-o-l-t. Sincecr-a- -u+l, 

AH(W,s)= AH(Vu,‘,,s - u + 1) + AH(Y’,s). 

Hence we obtain the following Lemma. 

Lemma 4.7. Let Y, VU, and D/’ be as in Remark 4.4. Then 

AH(V,s) = AH(Vu,s - (u - 1)) + AH(V’,s), 

i.e., 

H(V,s) = H(Vu,s -(u - 1)) + H(V’,s) 

for every s > 0. 

(4.1) 

Remark 4.8. Let W and 0: be as in Remark 4.6 and let V” = Uyz, Vi. Then, from 

(4.1), 

H(V,t)=H(V,,t)+H(V”,t - 1). (4.2) 



Y.S. Shin I Journal of Pure and Applied Algebra 127 (1998) 289-307 301 

Theorem 4.9. Let V be as in Remark 4.6. Let J =Z(V). Then v(J) = Cr=, mi + 3 

and the degrees of the minimal generators of J are: 

B-d,,,+a-1, . . . . P-dlt fcc-mt, 

P - &,,,z + (x, . . , B - d21 + c( - m2 + 1, 

u, u, fl-dU,C,+a+u-2, . . . . p-d,, +cc-m,+u-1, j?, 

Proof. Let Vj, Z, and & be as in Remark 4.6. Set Wj the hyperplane which contains 

Zi and Hi =I( Hi). We shall prove the theorem by induction on U. If u = 1, then we 

are done by Theorem 4.4. 

Now assume U> 1. Let Y” be as in Remark 4.8. Then, by the induction hypothesis, 

there exist cy= 2 m, + 3 minimal generators of IQ”‘) 

F;,, . ..> F&, 

with degrees 

/j-d2m2 +a- 1, . . . . B-d21 +sr-m2, 

u-1, a, b-d,,,,+u+u-3, . . . . /j-dul+cc-m,+u-2, /?, 

respectively, where Fui = g and Fim,+l = h. 

Let S = R/(H) ) and J’ = ‘*. Then 

J J X-N J+Wd=J,cs 
HI.[J:HII (Hl)nJ - (HI) 

Thus we have an exact sequence of graded modules 

0 i [J : H,](-1) 2 J --+ J;;7) + 0. 

Since [J : HI] = Z(V”), we can rewrite 

0 + I(V”)(-1) 3 J + J’ + 0. 

It follows from (4.4) and (4.2) that 

H(S/J’, t) = ’ 
H(R/J, t) - H( V”, t 

=H(v/~,t)> 

(4.3) 

the exact sequence (4.3) as 

(4.4) 

for t = 0 

-1) fort> 1, 

which implies J’ is a saturated ideal, i.e., J + (HI) =Z(Vt ). 
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By Theorem 4.4, there exist F,o,F,, , . . , F,,, , F,,,+, E J with degrees 

degFlo=~, degFi,=p-d,,, +a- 1, . . . . 

degh,, = P-d,, +x-m,, degFl,,+, =B 

such that FIO,FII,...,FI~,,FI~,+I are the minimal generators of J’. Moreover, F,o = g 

and F,,,+, = h. Let {I$} be the minimal generators of Z(W”) and {fi,} = {$H, } u 

{~o,F,,,...,~,,,F~,,+I}. 

Claim. J = ({5j}). 

Proof of claim. Clearly, ({&j}) C J. Conversely, for every FE J, F E J’. Hence 

F=fioNofF,~N, +...+FI,,N,, +F,,,,,+,N,,+, +H,K 

for SOme No,N ,..., Nm,,Nm,+], K E R. Since K E [J: H,] = I(b”‘), 

for some k4ij E R. Hence 

F=F,oNo+F,,N, +...+F,,,,N,,,, +F,,,+,N,,,,+, +H,K 

=fioNo+fiG’% +...+F,,,N,, +F,,,+,N,,+, + H, C <jMij 

=fioNo+~,N, +...+F,,,N,, +F,,,+,N,,+, + c (4,;H, )M, 

E ({fij)). 

Since c;b = F,o = g, i$+, = F,,,+, = h, v(J) = Cy=, m, + 3 where the degrees of the 

minimal generators of J are 

P-dl,, +a- 1, . . . . B-d,, +=-VII, 

P - dzmz i- a, > p - d2, + SI - 1712 + 1, 

u, u, B-dum,+cr+u-2, . . . . I-d,,+x-m,+u-1, 8. 

Hence we are done. 0 

Remark 4.10. Let X = UyE, X, be a k-configuration in P3 of type (d, ,, . . . ,d,,,; 

. . ; d,,, , . . . , d,,“) where Xi is a k-configuration in P3 of type (di,, . . . , d,, ) contained 

in the hyperplane Wj. Assume that the hyperplanes W, are parallel to each other. Since 

Xi is a k-configuration in Wi of type (d;,, . . . ,d,,,), there exist subsets Xi,, , J&, 

and distinct lines [Li,, . . . , Li,, which are contained in Wi such that: 

(1) Xi = lJ:L] xik; 

(2) lXik/ = dik and Y&k C [Lik for each k = l,...,mi. 
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* . . . * * . . . * * * . . . * . . . * 

* . . . * * . . . * * * . . . * . . . * 

0 

.. . 
* . . . . . * * . . . . . . . . 

INi 3 zi 
Ll 

* . . . . . . . . . * 0 l ... 0 ... * Lik 

l . . . . * . . . l . * . . . * . . . l ILi7$ 

Fig. 2. X, is the set of all 4’s. V, is the set of all *‘s. 

Choose M and p such that m, < cc, du,Il < /iI, and x < /I. Let Vi be the weak k- 

configuration in P3 of type (fi - di,q,. . . , /3 - dil, /I,. . . , B) which is obtained by taking 

the complement of Xi in a set Z; where Z, is constructed as follows. 

To each line [Lik of W,, add p - dik distinct new points. Further add CI - m, new 

lines each containing /I distinct points. (This set will then contain c$’ distinct points. 

See Fig. 2) 

Let Y := Uy=, Y/i and J = I(V). Then Y is a weak k-configuration in P3 of type 

(B-du,nz<, . . . . P-d,,,B,...,P;...;B-dl,l,..., /I - dl,, p,. . , 8). From the proof of 

Theorem 4.9, we can see that v(J) 5 c,“=, rni + 2~ + 1. The following example 

that each case of the above inequality can occur. 

Example 4.11 (Macaulay, see Bayer and Stillman [l]). Consider the following 

ples. 

shows 

exam- 

(1) Let Z be a basic configuration in P3 of type (2,3,5) and VI c Z be a weak 

k-configuration in P3 of type (3,4,5; 4,5,5) (see Fig. 3). Then the number of minimal 

generators of the ideal of VI is 6 by Theorem4.9. 

(2) Let 

v2 = { (1,231, 11, (2,4,1,1), (3961, l), (O,l, 1, I), (1,3,1, l), 

(2>5,1,1), (3,7>1,1), (O,-l,l,l), (l,l,l,l), (2,3,1,1), 

(3,5>1,1), (O,l,O,l), (O,LO,l), (0,3,0,1), (1,2,0,1), 

(1>3,0>1), (2,0,0,1), (2,1,0,1), (2,2,0,1), (2,3,0,1)}. 

(See Fig. 4). Then o/, is a weak k-configuration in P3 of type (2,3,4; 3,4,4), and the 

number of minimal generators of the ideal of V2 is 7 from Macaulay [l]. 

(3) Let 

v; = {(4,g, 1, I), (4,9,t, 1), (4,7,1, l), (0,4,0, I), (1,4,0, I), (2,4,0,1)] 
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/ . ..i?’ / 
Fig. 3. A weak k-configuration in P3 of type (3,4,5; 4,5,5) 

Fig. 4. A weak k-configuration in P3 of type (2,3,4; 3,4.4) 

and Vx = o/, U Vi (see Fig. 5). Then Vx is a weak k-configuration in P3 of type 

(3,4,5;4,5,5), and the number of minimal generators of the ideal of Vs is 8 from 

Macaulay [ 11. 

Corollary 4.12. Let X, Y, Z, and J be as in Remark 4.6 and let I = I(X). Then 

I + J is a Gorenstein ideal of codimension 4 and 

v(l+J)=2 2 mi+U+ 1. 
i=l 

Proof. By Remark 1.4 in [7], I + J is a Gorenstein ideal of codimension 4. Let H; be 

as in the proof of Theorem 4.9 and H = nb, H,. Let {H, F~o, FII,. . , Fl,,;. . . ; F,o, 

Ful,. . , FM,=} be the set of the minimal generators of I and let {H, Glo,. . . , Gr,, , Gl,,+r ; 

G21,...,Gzm*;...;Grrl,..., G,,,,,} be the set of the minimal generators of J where F,olGlo 
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)/ 
Fig. 5. A weak k-configuration in P3 of type (3,4,5; 4.4,~) 

and F,,,,/G~,,,,+I. (This is always possible.) So we have that 

H, fro, 41, . . . . &,, . . . . I;;lo, F,I, . . . . F,,“, 
‘%I, . . . . Gm,, G,,+I, G21, . . . . G2m1, . . . . &I, . ..> G,,,~ 

certainly generate I + J. 

We first show that no other fij can be eliminated from the set. If l$j(H, . . , E,, 

‘. 3 F .GII,..., urn,,, G,,,,) (where G means that * is omitted), then 

F;i = EH + c~lofio + ‘. + ~3, + + ~u,,,&nt, + 81 I GI I + . + Ln,,G,,,,, 

for some a, ~10,. . ,$I,. . . , a,,,,,,,, PI I,. , Bum,, E R. Thus 

~IO~O+...-F;~+...+~,,~~~,,,,=-_(~H+BIIGII +~~~+/Lm,,G~mu) 

E 1 I--IJ = (K GIO, GI~,+I). 

Hence there exist CI’, x”, CX”’ E R such that 

~IOFiO + . . - F;j + . . + %m,&nt, = -(a/H + ~“GIo + d”Glnr,+l ), 

i.e., 

h 

6.1 = 2’H + EIOFIO + . ’ + ti,jF;i + . ’ + ~um,<Em,, + ~“Go + ~“‘G~,+I 

E (Kfio,... ,6j‘;...,F,rnu), 

a contradiction. Hence Ej $! (H, F,o,. . ,zy,. . . , Fum,, GI I,. . , G,,u). 

We now show that no Gx_/ can be eliminated from this set. Assume Gkl E (H,fio, 

. . . . F um,,,G~~ ,..., Sk:., ,..., Gum”). Then 

Gkl = aH + aloFlo + . . . + %un,,F,mu + BI I G I + + P&, + . + Ln,,Gu,n,, 
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for some x, x10,. . . , x,,~,~,PI I,. .,&I,. . , &,l,, E R. Thus 

-(aH + x1060 + + &z,,F;,,,,,) = P,, GI, + . . - GM + . + ljum,,G,,,,,,, 

E I nJ = (H, Go, GI,~+,). 

Hence 

PI I G I + - GA/ + + ljwn,,Gm,, = -W + B’Go + P”G,m, +I ) 

for some fi, B’, /j” E R. It follows that 

GM = PH + B’Gto + IIIGII + + Pi& + . ‘. + L,,,Gum,, + /‘3”G,m,+, 

E (H, GIO,. . . , GA,, , Gun,<), 

a contradiction. Thus Gk, $! (H, F,o.. . F,,,,, G1 ,, . . , &, . . . , G,,,,t,), we are done. 0 

Remark 4.13. Let Z = IJ:.:, Lj be a basic configuration in P3 of type (~,m,,d,,~,) 

(u > 2) where & is a basic configuration in P3 of type (1, m,,,d,,,,) and X c Z be a 

k-configuration in P3 of type (dl ,. . . . ,d,,,; . . . ; d;,l, , d,,,,). Let Xi = Z, n X. Then 

X = IJF=, X;. Let V’, = Z; - X;. Then V =: Z ~ X = Uy=, 7~‘; and V is a weak 

k-configuration in P3. Assume that V, is a weak k-configuration in P2 of type (du,nu - 

d;,,,. . . > dun,z< - 41, dm,,, 1 Ln,, 1. 

The proof of the following theorem is the same as that of Theorem 4.9, so we shall 

omit it. 

Theorem 4.14. Let V he us in Rernuvk 4.13. Let J = I(V). Then v(J) = EYE, m, + 3 

and the degrees of the minimal generators oj’J are: 

u, dun,,, ~ dl.,, + m,, - 1, . u’,,,,,,, - dl I + m, - ml, 

mrr, d,,,,,, - drr-lm,,_, +m,,+u-3, . . . . 
d l,lll,c - d,,-I I + ml, ~ mp~ + u - 2, dun,,,, 

ml, + u - 2, d,,,,,, ~ d,,,,,-1 + m,, + u - 3, . , d,,,,,, - d,l + u - 1. 

We also get the following corollary by the same method as in the proof of Corol- 

lary 4.12. 

Corollary 4.15. Let X and V’ he us in Remark 4.13. Let I =1(X) und J = f(V). 

Then I + J is u Gorenstein ideul of codimension 4 and 

v(I+J)=Z~m,+u+I. 
i=l 
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